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A Systematic Study of the Effects o" Crust and tipper Mantle Structure

on Regional Seismograms

by

Danny J. Harvey

1. Introduction

As part of a broader effort to invert for Eurasian crust and upper mantle structure,

a study has been undertaken to investigate the effects of structural model variations on

regional synthetic seismograms. The intent of this study is to produce regional syn-

thetic seismograms that approximately match the observed data so that the inferred

structural models can be used as starting points in a formal inversion procedure.

Another purpose for this study is to identify to what extent different modeling tech-

niques can be used to adequately represent the observations.

We are particularly interested in using laterally homogeneous modeling pro-

cedures since they are computationally efficient and accurate, given the assumption of

ID structure. This issue of computational efficiency is not a minor point. The process

of inferring source and structural parameters, whether using formal inversion pro-

cedures or systematic studies, requires a large number of forward evaluations. On the

other hand, we know that the earth is not laterally homogeneous and it is important to

identify the inadequacies of full waveform modeling using ID structures. In this study

we hope to gain understanding about the basic physical processes that are important .f4,.o, ,xQor

for regional seismic wave propagation and we want to determine the fundamental limi- I"e 14Lr

tations of ID modeling techniques. Ric t j
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2. Research Accomplished

The data we used in this study comes from three sources and we have concen-

trated on the USSR Joint Verification Experiment (JVE) nuclear shot that took place

on September 14, 1988 at the Semipalatinsk test site in Kazakhstan. The first set of

data sources are the IRIS high frequency surface instruments at Chusal (CHS), Arti

(ARU) and Obninsk (OBN). The second set of sources were portable high frequency

instruments that were placed at Karasu (KSU), Karkaralinsk (KKL) and Bayanaul

(BAY) and the third data source consists of hand digitized analog records recorded by

Soviet observatories at

ARU, OBN, Talaya (TLY) and Norilsk (NRI). 1 Figure 1 shows a record section

plot of the vertical component IRIS and portable digital instrument recordings after

application of a low pass filter and decimation to 1 Hz nyquist frequency. The useful

frequency range is 0.1 to 1.0 Hz. The digitized Soviet data after similar filtering and

decimation is shown in figure 2.

Although the instrument responses for the analog records are somewhat different

from those of the digital instruments, we can still see certain basic characteristics of

the waveforms.

1. Other than the first P arrival, the only consistent arrival is L. which is character-

ized as an emergent arrival with a long coda. We should point out that L. is not

always apparent from other test sites or at stations from the Kazakh test site that

are further away.

2. The S,, arrival, which becomes the direct upper mantle S arrival at the longer dis-

, •.. tances, can be seen on some of the records (CHS and ARU), but it is small.

3 There is no obvious P, arrival. It could be hidden in, or contributing to, the coda

"he digitized analog Soviet data was obtained through a joint US-Soviet seismic data ex-

ip change agreement. These data were originally heliocorder records that were hand digitized by a
US contractor.
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associated with the first P arrival.

4. There is no appreciable Rayleigh wave in this frequency band for the stations at

distances greater than 250 km.

We used three methods for computing synthetic seismograms for comparison with

the data: the locked mode method of Harvey, 2 the reflectivity method 3 and the WKBJ

ray theoretical method of Chapman and Dey-Sarkar.4 Most of the complete seisimo-

grams were computed with the locked mode method with the reflectivity method used

for periodic checks. The WKBJ ray theory was meant to be used as a very rapid initial

check of candidate structural models. The synthetic seismograms were all computed to

1 Hz nyquist frequency and were filtered with the instrument responses and the same

anti-aliasing filter used in the decimation of the data.

The structural models used in this study are shown in figure 3. We started with a

"crude" model, shown in figure 3a, which consists of six homogeneous layers with

discontinuities at 10, 50, 220, 410 and 700 km depth. The Q model for the "crude"

structure was Q, = 2000 and Qp = 950 in every layer except the topmost layer where

Q, = 200 and Qp = 95. A synthetic record section using the crude model is shown in

figure 4. If we compare this with the data we can see that the crude model produces

no appreciable L, and it produces a direct S arrival that is much larger than in the data.

If we try to increase the Q values in the topmost layer, a large Rayleigh wave appears

and L8 is still much smaller than in the data.

Figures 5 through 10 show the synthetic record sections corresponding to the

structural models shown in figures 3b through 3g. The basel model is a layerized ver-

sion of a model with smooth gradients within the crust, at the Moho and in the upper

2 Harvey, D. (1981). Seismogram synthesis using normal mode superposition: the locked
mode approximation. Geophys. J R. Astr. Soc 66. 37-61.

SLuco. J. and Apsel. R. (1983). On the Green's functions for a layered half-space: Part 1.
Bull. Seismol. Soc Am. 73. 909-929.

. Dey-Sarkar. S. K. and Chapman. C. H. (1978). A simple method for the computation of
body-wave seismograms. Bull. Seismol. Soc Am. 68, 1577-1593.
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mantle.The base2 model is similar to basel except that a weak low velocity zone has

been introduced at about 100 km depth, the upper mantle gradients have been

decreased and gradients at the upper mantle discontinuities have been added. The

base3 model, although unrealistic, was an attempt to minimize the direct S phase by

using a completely smooth V, distribution throughout the upper mantle.

In a previous study we determined that using a vertically randomized velocity dis-

tribution in the crust produced synthetic seismograms that show many of the features

that we see in the data especially in the early parts of the wavetrain. The ranl-basel,

ranl-base2 and ranl-base3 (figures 3e, 3f and 3g) structural models are combinations

of the upper mantle structures of basel, base2 and base3 with a vertically randomized

version of the crust.

If we look at the synthetic record sections of figures 4, 5, 6 and 7, which all

correspond to -mooth or large-scale blocky structural models, we see many large

amplitude impulsive arrivals. The direct upper mantle S arrival is particularly large.

We took some time to understand the nature of this arrival in the synthetic seismo-

grams. We were using pure explosion sources at 630 m depth for all ot the synthetic

seismograms so the S arrival is generated entirely by P toS conversions predominately

at the free surface. By comparing ray theoretical arrivals with those from the complete

seismogram synthesis codes we were able to determine that the direct S arrival is a

combination of a normal P to S conversion at the free surface along with a strong

diffraction arrival that is generated by the small radius of curvature of the P wave front

as it is reflected at the free surface. In order to represent this diffraction arrival in the

ray theoretical code we added a vertical vector point force at the free surface that was

time delayed by the P travel time from the explosion source at 6.0 m depth to the sur-

face.

The data shows weak or nonexistent direct S arrivals which represents a major

discrepancy between the data and the synthetics. From previous studies we know that

4



there is evidence that undeiground nuclear explosion arrivals generated by fiee surface

conversions are weaker in the near source region than theory predicts.5 However, this

effect is not normally strong enough to explain the difference the we see here between

the synthetic seismograms and the data. If we look to upper mantle intrinsic attenua-

tion, a simple calculation yields a Qp value of about 100 that would be necessary to

bring down the direct S arrival amplitudes to be consistent with the data and this valuei

of upper mantle Q is probably unreasonable and at odds with the Q estimates from

whole earth inversion studies for the central Asian shield region.

As an alternative mechanism for the reduction of the direct S arrival amplitude we

have investigated near surface linear elastic scattering by introducing a large number of

thin crustal layers with a random component to the velocity distribution which presents

a broad-scale vertical scattering environment to the upper mantle arrivals as they pass

through the crust. Figures 8, 9 and 10 show synithetic record sections with crustal ran-

domized versions of the structures represented in figures 5, 6 and 7 respectively. The

crustal scattering in the randomized models has caused a number of effects.

1. The direct S arrival is consistently reduced in amplitude. In some cases, such as at

CHS, this reduction is substantial and the seismograms for the randomized models

conform to what we see in the data.

2. The direct P arrival is able to pass through the randomized crustal layers with

only a small reduction in amplitude which is consistently with the data.

3. There is a tendency for all impulsive arrivals to be "blurred" out to produce

wavelet groupings followed by coda. This is a characteristic that we see in the

data.

4. Although it is not readily apparent in the figures, the total Lt energy level

increases with the randomized models.

T This is normally attributed to non-linear effects in the region above the explosion which
effectively create an extremely low Q zone between the explosion and the surface.
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A closer comparison of the data with all of the synthetic seismograms at four sta-

tions can be seen in figures 11 through 14. The crustal randomization mitigates, at

least to some extent, the problem with the direct S arrival, however there remain sub-

stantial differences between the data and the synthetics especially regarding LF and the

Rayleigh surface wave. By using differential seismograms we have determined that LF

for these crustal models propagates in the upper 10 km of the crust, in the same gen-

eral region where the 0.5 Hz Rayleigh wave is appreciably energetic. Attempts to

attenuate the Rayleigh wave with suitable Q models also causes L. to be attenuated.

This can be clearly seen when we compare the crude model, where the Q values were

low all the way down to 10 km depth, to the basel model, where the Q values were

low only to several km depth. If we compare L. to P amplitude ratios of the data to

those of the synthetics we find that except for station KKL, the data has consistently

higher values than the synthetics suggesting that, if anything, the upper crust Q values

for the synthetics are too low. At the same time the data shows no sign of 0.5 Hz Ray-

leigh waves for the stations at distances more than 1000 km, suggesting that ilt upper

crust Q values for the synthetics are too high.

If we look at the comparison for station KKL (figure 11), which is at a distance

of about 250 km, the data shows a large and dispersed Rayleigh wave and a small L.

arrival. This is a station where the Lg to P amplitude ratio is higher for the synthetics

than for the data and where the data shows a Rayleigh wave that has approximately

the same amplitude as that of the synthetics. The big difference between the data and

the synthetics is the dispersed nature of the Rayleigh wave in the data compared to the

relatively impulsive nature of the Rayleigh wave in the synthetics. The group velocity

range corresponding to the observed Rayleigh wave dispersion is about 3.0 to 2.4

km/sec. This sort of dispersion at such a small distance is difficult, if not impossible,

to produce with laterally homogeneous modeling techniques using reasonable structural

models. We think that the observed dispersion in the Rayleigh wave at KKL is likely
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due to lateral scattering mechanisms that fall into two basic categories: 1) large scale

multi-pathing of the fundamental Rayleigh wave forom different aiinrths at it.

receiver and 2) small to medium scale scattering of the fundamental Rayleigh wave

into higher modes along the entire propagation path.

If small scale scattering of the Rayleigh wave is not important, then we would

expect to SCe.t"l" lOw ayleigh Wva've fIt the mitge't (I',hlIn1lee .'x(*le with "%'cfinihh'l" di',li

sion ch'ill cicliitic.% likc wc do at KKI, It ,mall ',talC %,CMttcl l 1% 11111)001h1t, lh11e.' tlic

Rayleigh wave would be continuously scattered into other onndes along its propagation

path which would effectively attenuate it as it propagates. When the Rayleigh wave

impinges upon a small subsurface scattering region, body wave energy would be radi-

ated which would likely be at the S wave velocity of the upper crust, ie. the I., velo

city. We think that there is a strong tendency for the high frequency Rayleigh wave to

be scattered into L1 which attenuates the Rayleigh wave and boosts the L,, arrival and

this hypothesis is consistent with the differences we see between the data and the

laterally homogeneous modeling results.

The lateral scattering of a well organized surface wave into a highly focused

waveguide arrival points out the inadequacies of representing random scattering with

an effective "scattering" Q value. The scattering Q value necessary to reduce the Ray-

leigh wave amplitude consistent with the data also clobbers L,. In this case the

effective scattering Q value is different for the Rayleigh wave and L, even though they

occupy the same depth and frequency range. In fact it may be that the scattering Q) for

L is negative, since Lg is the beneficiary of Rayleigh wave energy along with other

forms of scattered energy. If this representation of 1., is accurate then we could con-

sider I.,, to be a sort of "garbage can" arrival that picks up energy scattered from other

arrivals and focuses it along the upper crust waveguide.
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3. Conclusions

We have compared regional data recorded during the Soviet JVE' with synthetic

seismograms for a number of hypothetical structural models using laterally homogene-

oLIs modeling techniques. (O)tr intent was to determine which parts ol the wavetorin%

could be adequately represented by these techniques, to identify where lateral scatter-

ing plays a critical role in the wave propagation and to infer structural models that can

be used as starting values in a formal inversion pro'-edure. Out conclusions from this

study are as follows.

1. The only clear and consistent arrivals in the data are the first P1 arrival and L,. A

weak direct S arrival can be seen occasionally. There is no evidence of a Ray-

leigh wave at distances above 1000 km.

2. Ieaterally homogcneou, modeling does a it ily good job o( icpi escnting the filt I1

aiirival and, to a lessei extent, the liist S aruival.

3. Vertical randomization of the crust is necessary to smooth out impulsive ariivals

that we do not see in the data and to help capture S energy within the crust before

it has a chance to propagate into the nmantle.

4 Although most reasonable laterally hornogctrotos strut tu ral in odekI will piod nc.

an L, arrival, it is difficult to match the observed amplitude. Attempts to adjust

upper crust Q values to boost I, has the undesirable side effect of boosting the

Rayleigh wave amplitude.

5 A plausible liypotlhvis to explain the dit c: ,c'.,cs In I., alnd RayýhCleh wave aMrpi-

tudes between the synthetics and 0,.,a is that small to medium scale lateral

scattering of the Rayleigh wave into L,. is occurring along the entire Rayleigh

wave propagation path.

6. The LP arrival may be a seismic "garbage can" that naturally picks up and focuses

energy that has been scattered, either vertically or laterally, from all othei waves

8



that pass thbroughi t1lie upper Crust

Ouf recommendations tor future work aie as follows.

l. In order to explain Rayleigh wave and L, amplitudes at regional distances, Ray-

leigh wave to I, lateral scattering needs to he investigated. It is hikcly that cithci

a mode coupling method must be used to model this or numerical modeling

methods, such as 2D or 3D finite difference, must be used.

2. The role of vertical randomization in the upper mantle needs to be studied

Although we would not expect the random characteristics of upper mantle velo-

city dlist Iutlt iols to be the same as ti III the (*1'ust, it w11 oulld hc I ca-',iab)ll t 1(i

expect s;onc etfectively random copili wril to the velohIty disrtilbuilol, I 1lp,'?

mantle randomization would help to further smooth out impulsive arri vals and to

effectively defocus strong triplications.

3. It will be highly desilable to develop methods for mnapping stfctlUi ll and SOtitCC

statistical paramieteis into obseived statistics, such as RMS I•. imcasulelments.
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Figure 4. Synthetic seismograms for the structural model shown in ligure 3a.



Base 1 Structure
0 ,

KSU
KKL

1000--

Cl~s

-~~~ ARU _Ij

TLY . uL,)

2000

3000,

-200 -100 0 100 200 300 400 500 600 700 800

Reduced Tine (sec), t - r/ 8.10

Figure 5. Synthetic seismograms for the structural model shown in figure 3b.
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Figure 7. Synthetic seismograms for the structural model shown in figure 3d.
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